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Abstract

We discuss a fast algorithm for the linear programming relaxation of
the Multiple Choice Knapsack Problem. Let N be the total number of variables
in this problem and let J and Jmax denote the total number of multiple choice
variables and the cardinality of the largest mul:iple choice set, respectively.
The running time of the algorithm is then bounded by 0(J log Jmax)+ O(N).
Under certain cond:.tions it is possible to reduce this bound to O(N) steps on

the average. Possible further improvements are also discussed.
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I. Introduction

Consider the following LP/Multiple-Choice Knapsack Problem (LMCK)

(LMCK) 2% = Minimize 2 c:lx-1
jen
(1) subject to jEN ajxj 4
(2) = s 8 k € K
jGJk
3) X, >0 JEN
(4) x;< 1 jeremu J
kEK

where the multiple choice sets, Jk’ k € K, are mutually disjoint. Let

J= U Jk’ I = N\J. We refer to the variables of J as multiple choice
k€K

(or GUB) variables and to those of 1’ as simple upper bounded ones.
(LMCK) is a special case of the general (LP) problem with general-
ized GUB or VUB constraints which has been studied extensively (see, for
instance, a recent paper by Schrage [l1])., 1Its main application is as
a relaxation for the integer multiple choice knapsack problem [9], [13],
which is a useful model for various real life problems. In addition, as
pointed out by Witzgal, [14], an efficient algorithm for (LMCK) can be
used to accelerate the solution of ordinary LP/GUB problems by the dual
simplex algorithm. The reader may note that several generalizations of
(LMCK) fall within the scope of the model presented here. For instance,
arbitrary positive upper bounds in (4), as well as arbitrary coefficients

in the multiple choice constraints (2), can be handled by normalization.1

1
Negative coefficients in (2) can be handled by complementing the variable
in question relative to an artificially set large upper bound. The optimal

solution of (LMCK) must be checked in such cases for non-boundedness of
the original problem.
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Thus the two constraint linear programming problem can be viewed as a
special case of (LMCK).

(LMCK) is equivalent, but not identical, to the problem treated
recently by Glover and Klingman [6], which in turn is a slight generaliza-
tion of the problems studied by Sinha and Zoltners [13], and Witzgal [14].
The difference between the model presented here and the one of [6] is in
the introduction of the individual upper bounds (4). [13] and [14] do not
allow for any variables which are outside of the multiple choice con-
straints, (Using the notation introduced earlier, the model presented
in [6] corresponds to the case I’ = @ while those of [13] and [14] to
) i ¢).2 Upper bounded variables can be accommodated by the algorithms
of [6], [13] and [14] by treating each such variable, together with its
slack, as a multiple choice constraint. However, this convention tends
to increase both N and K and with them the computational effort. 1In
contrast, the algorithm proposed here works in the opposite direction,
i.e. it converts multiple choice variables into simple upper bounded ones.
Thus, it takes full advantage of the existence of variables in I.

The algorithms of [6], [13], and [14], as well as the one presented
here, are basically two-phase procedures. The role of Phase I is to
identify the lower convex boundary of each of the multiple-choice ifsf
(see Propositions 1 and 2 below). It is well known that this task can.be
accomplished in U(J log Jmax) steps, where Jmax denotes the cardinality_

of the largest multiple choice set. 3,4

2'rhe distinction between I and I’is of 1little consequence from a compu-

tational point of view, since, as pointedout by Glover and Klingman [ 6 1s
all but at most 2 variables of I\I’ can be trivially eliminated at the
outset,

3Throughout this paper we let the same symbol stand for a set and for its
cardinality.

4
Throughout this papnr we take log x to mean max{ log x,1}
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Phase II of the above mentioned algorithms is an iterative improve-
ment procedure. As mentioned earlier, the algorithms of [6], [13], and
[14] treat the variables of I as additional multiple choice constraints.
Let K = K + I be their total number under this convention. The com- .
plexity of Witzgal's Phase II is then O(K (N-K)) while Glover and Kling-
man's is O(N luog K’). Sinha and Zoltners do not give complexity estimates

but their procedure is of a similar type. Its precise performance may

equal one or the other of these bounds depending on some unspecified de-
tails of implementation.

A particularly interesting special case of (LMCK) is the knapsack
problem (LKP), which corresponds to the case J = @§. An O(N) algorithm for
this problem is given in [1],(2],(8]. Although any of the algorithms of (6],

[13], and [14] can be specialized to solve (LKP), the resulting procedure

is not an O(N) algorithm for (LKP). This discrepancy brings to mind the
question, posed by Glover and Klingman, (6], as to the possibility of design-

ing an algorithm for (LMCK) which retains (or even exceeds) the efficiency achieved
by the algorithms [6], [13] or [14], while specializing to an O(N) procedure
when the instance of (LMCK) corresponds to (LKP). 1In this paper we settle

this question in the affirmative. More specifically, our algorithms use

the calculations of Phase I in order to convert (LMCK) into (LKP). This

conversion is done without increasing any of the problem parameters (such
as the number of variables or the size of the coefficients) and takes a
éé’ negligible computational effort. Since (LKP) is known to be of complexity

O(N), the over all complexity of our algorithm is

.
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(5) P = 0(Jlog J,ax) + O(N)
Expressed in terms of N alone, it is quite clear that there exist positive con-

stants, ¢_, ¢_, such that

)

N<P<c, N logN

g 2

For instance, P & O(N) if there exist c3 such that Jﬁax < €y, OT if for every
positive constant, C,o there exists N* such that ¢,. N> J for N > N*.

We present the transformation of (LMCK) into a knapsack problem in section II.
In section III we discuss two possibilities for improvements on the bound (5).
The first one is the "Divide and Conquer" algorithm of Bentley and Shamos, [3],
which can be used to speed up the computation of phase I. Under certain condi-
tions this approach yields an algorithm for (LMCK) whose expected running time is
O(N). The second improvement,directed at phase II, is based on a generalization
of ideas due to Jefferson,Shamos and Tarjan, [12], Johnson and Mizogouchi, [8]
and Galil and Megiddo, [5]. It is particularly relevant for cases in which Phase I
can be avoided entirely. This may arise, for instance, if each of the sets Jk’
k€K, arises from piecewise linearization of a certain (one dimensional) convex
function. In such cases, it is sometimes possible to solve (LMCK) in sublinear

(worst case) effort.

II. The Transformation

Several properties of an optimal solution for (LMCK) are discussed in (5],
[13) and [14]. Propositions 1 - 3 below are straight forward generalizations

of these properties.
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Proposition 1 (61, [13]), [14]. . 1et 1,1 € J, for some £ € K

with ai = aj

i ]
then there exists an optimal solution to (LMCK) with X, = 0.

C > c
=

Proposition 2 [6], [13], [14] Let i,j,k € J, for some £ € K

with ‘1 < ‘j < a,
c€g = ¢C ¢, - ¢
and . £ 2 k 1
‘j -a a - aj

then there exists an optimal solution for (LMCK) with xj = 0.

It will be convenient to think on a given multiple choice set,

as a set of points, {(a cj)} j € J,» in a two dimensional space. Using

j’

Proposition 2 we can eliminate from such a set all but those variables
which define its lower convex boundary. Let Jl: € Jy be the set of

remaining variables and let J' = U J', N'=1U J’. Proposition 1

kEK k

ensures that a; $a. 1,3 € Jé, fk gl

j

There are several available algorithms which can be used to identify
the sets Jé, k € K (e.g., [7], [10].) The approach taken in [6], [13] and

[14] is based on first sorting the variables of each set J  according to

k

increasing aj values. The sorted sets are then scanned and variables

which violate Propositions 1 or 2 are purged. The computational complexity
of this procedure, as is the case for most other techniques which identify

the convex hulls of a set of points in a plane, is determined by the sort-

ing phase. Since sorting a set of size J, requires O(Jk log Jk) operations,

k
the overall complexity of phase I is given by
k

Oéfl Jk log Jk) S0 log J..)-
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Denote by (iMCK)’ the (equivalent) problem obtained from (LMCK) by

replacing the sets J. with JL, k € K and N with N'. We assume that the

multiple choice sets are indexed such that

P TR ¥ TN Iy VY TV

/
I (a3 Hleee sl + 3 -1 = 4]
and

ajk <

W.L.0.G. we can assume JL.Z 2, k € K. By convexity,

o S s 23

a < ® e 0 < a
3t i

1) for j==_‘jk,...,i.k sy KkKEK

(gp =S/ @y m2) < )/ By~ 2y

Proposition 3 [6], [13], [14]

i Any basic optimal solution for (LMCK)), x, satisfies

(6) x has at most two fractional variables.

¢7) if x has two fractional variables they must be adjacent

variables within one of the multiple choice constraints.

(8) if x has a unique fractional variable it must be a non-
multiple choice variable. é
We now define a knapsack problem, (LKP), which is equivalent to (LMCK) ‘ %
For each multiple choice set, Jé, let
" - ” = " " - (4
Jk J;C\{jk} and let J U Jk’ N IU J’ . Define
kEK
ey - 4 it jery
(9) dj = : i
cj iE J e T %,
4
a, - a 1£f € J ﬁ”
17 %1 J
(10) e, = i
j 3 if je1 r’,f'é
& |
and consider the following knapsack problem: b
¢
(LKP) W* = minimize Z dy, + I ¢ i
jev’ 373 ek i §
g
R
(11) subject to I e, y,+ L a, = a i
jen* 373 eg e O ;




S S
(12) yy20 JEN
(13) yy< 1 & TN 3"

In words, we have eliminated the first variable, xjk, from each of
the multiple choice constraints by setting this variable to 1. The objec-
tive and constraint rows have been re-adjusted to record this elimination.
The remaining multiple choice variables are then replaced by "difference

variables", yj = xj - xj-l’ whose role is to enable one to shift from xjk

"

k
quite apparent that the variables yj will function properly only under

to other variables of J, as possible representatives of this set. It is

certain conditions. Indeed, there is no obvious correspondence between the

feasible solution set of (LKP) and that of (IMCK). However,

Theorem 1
(LKP) is equivalent to (LMCK)' in the following sense:
(1) W = z*
(ii) Let ; be a basic optimal solution for (LKP) and let
f denote the index of its basic variable, 0 < Ye < 1.

Then a basic optimal solution for (LMCK)’, x, can be

defined as follows:

(14) xy = ;j jEI
' (15) Let J‘k be such that £ ¢ J{( "
| Define
i 3 if y,=0 vjeq
c i ;
| ) max{j]|j € I ¥y * 1} otherwise

é¥?j then

1 JE€I, §=h
]
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(16) Let J; be the unique set such that f € J: (if indeed

such a set exists). Set

Ve j=f
'ij- 1-§£ j=31
0 jGJr,j#f,f-l

Proof. Call a basic feasible solution to (LMCK)', ;, acceptable if it satis-
fied (6), (7) and (8). Call a basic feasible solution to (LKP), ;, acceptable

if it satisfies the following condition:

II__= 2 £ ¥
(17) yj >0, § € Jk = Iy 1 i € Jk' i<y

The theorem follows from the following three facts:

(i) The transformation defined by (14), (15) and (16) is
a one to one mapping from acceptable solutions of
(LMCK)’ onto those of (LKP).
(ii) For any acceptable solution for (LMCK'), the transformation of

(i) preserves the objective function value.

(iii) The optimal basic solutions to both (LKP) and (LMCK)' are

acceptable for the corresponding problems, Q.E.D.

III. Improvements

Let us reconsider the bound (5). As we have already noted, the overall

complexity of the algorithm presented in the previous section may get as high

as O(N log N). The bulk of this effort is spent on the execution of phase I,
i.e., on the identification of the sets J’, k € K. It is well known (e.g., [3])

that a lower bound on the effort involved with this task is given by
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I 0Q
i=1
equivalent) will require at least O(N log N) steps under adverse conditions.

K log Jk). Thus, any algorithm which is based on phase I (or its

The question of whether (LMCK) can be solved without explicitly identifying
the sets Jé, k€K, is open.

The foregoing discussion relates to worst case analysis only. Under
certain condition; one may do better on the average. For instance, Bentley

and Shamos, [3], have developed a "Divide and Conquer" algorithm which is

particularly efficient if J‘: << Jo k € K. More precisely, let L S J, be

a random subset of Jk and let Lé stand in the same relation to Lk as Jé

does to Jk. Since Lk is a random set so is Lé. Denote by E(Lé) the expected

size of this set. If there exists a constant p < 1 such that
(18) E(L,) < LY, k €K

1

k
bounded by O(Jk). This implies, of course, that phase I, and hence the al-

Then Bentley and Shamos' algorithm finds J, in expected time which is
gorithm as a whole, can be solved in (expected) O(N) steps. (It is noted in
[3], that a "pivide and Conquer" approach can yield an algorithm for the two
variable linear programming problem whose expected and worst case running
time are bounded by O(N) and O(N log N) respectively. As noted earlier, the
dual of this problem, i.e., the two constraint linear programming problem is
a special case of (LMCK).)

Condition (18) is known to hold under quite a variety of situations.
For instance, it suffices to assume that the data f(ci,aj)},j € Jk are inde-
pendent and identically distributed and that for any given variable the cost
and weight coefficients are independent of each other. For details and

references see [3].

A final remark concerns the case where each of the sets Jk’ ke K, H
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arises from a process of piecewise linearization of a certain (one dimen-

sional) function. Such a process often yields the coefficients faj}, 5 € Jk’

already sorted in a natural way. This reduces the computational complexity of
phase I to 0(J), and of (LMCK) to O(N).

If the nonlinear functions referred to in the previous paragraph are
known to be convex, one can sometimes do even better. We note that in such

cases J' = J ,k €K, and one can start the computation directly at phase II

k k’
(as in [4], p.p. 484-486). The knapsack problem that results in such a case
has a special structure that can be exploited by generalizing some ideas
brought forward by Jefferson, Shamos and Tarjan, [12], Johnson and Mizoguchi,
(8] and Galil and Megiddo [5]. The resulting algorithm is of complexity
0(K 1og2(J/1<)) + 0(I log (N/I))

which may be less than linear in N. This would mean that such problems
can be solved in less time than is needed to read in the totality of the
data f(ci,ai)], i € N. Such sublinear berkavior is possible, for instance,
in an on-line environment where the convex functions which are subject to the
process of piecewise linearization are only evaluated when needed.

The algorithm of (1], [2], [8], for (LKP) is based on an iterative step
in which the median element of the set {di/ei},i €N, is used>to reduce the

size of N by a factor of at least 1/2. The lion's share of the computational

effort is spent on the operation of identifying the median. The procedure

below uses a certain approximation for the median which is cheaper to calcu-
late but which stiil guarantees that a significant portion of N (at least
1/4) will be disposed of at each iteration. For a statement of the algorithm

it is convenient to rename the set I as Jg. At each iteration, for k = 0,...,K let




..J‘.’ - -

* .

T

J ={3) € JI:Iyj was already set to 1}

=+

= 4
I {1 € Jklyj was already set to 0}
*
J = {j € J;lyj is as yet unassigned}

and for # = +, -, or * let

K ¢
N# = U Jk
k=0

For a given scalar A consider the following partition of J;, k =10,.. K.
1 *
I = {5 €5 | dj/ej >}
2 - o =
I ) {j € Jkl dj/ej g
3 *
J Q) =1{3€ Jkl dj/ej <}

For i = 1,2,3 let

K

Moy = U g o
k=0

and

5 L
sS(\) = Z e
jentony

Algorithm KNAPSACK

+‘ =
0. Set Jk Jk

1. Choose A as follows:
*
(a) Let r, be the median index of each set Ry = {dj/ej}, J €3,
k= 0js0sKe
(b) Let r be the weighted median index of the set

R={d /e_.} k=0,...,K, where the weight associated
Tk

with the kth element is the cardinality of the set J:.

(c) Let A = dr/er -




2. Calculate Sl(k) and SZ(X).

ta)  If SI(K) < ab < Sl(k) + Sz(k) stop, A is optimal. An opti-

mal solution, ¥, can be found by setting ;j = SIENEE Nt (0] Nl(k),

P

;j =0, §EN U Ns(k), and then "filling the knapsack' with

variables yj, j € NZ(X) (any, possibly including one at a

fractinnal value).

3 1

! & = i 2 5 = =
(b) If S;(A) > &) set I = I U I U T, I =Jp, k=0,...,K

’ + o 1+ 2 1 aF o3
(c) If Sl(l) + SZ(X) < 3, set Jk Jk (] Jk 9] Jk’ Jk J=
/ = {4 -
k =0,...,K, a; = a, (Sl(k) + Sz(k)).

3. If N*> I+K Go to 1.
Otherwise

4, Solve the remaining knapsack problem using the linear time algorithm

of [ 1], [2], [8].

To assess the computational complexity of algorithm KNAPSACK we note

that each iteration reduces the size of N* by a factor of at least 1/4.

The number of iterations through steps 1, 2 and 3 is then bounded by

0(log (N/ (K+I))). » '

The effort involved in each iteration is as follows:

(i) For each of the sets J*, K= l,...,K; otie can £ind o

5
calculate the contribution of Jk to SI(X), Sz(l), and -

FomEcamng L

form the sets J;, i=1,2,3, in an effort bounded by

*
0(log Jk) < 0(log Jk).

*
(ii) The same tasks can be accomplished for J0 in O(Jo) < 0(1)

A steps.

gt e %

(iii) The weighted median r can be identified in 0(K) steps.

In addition one may spend O(k + I) operations going through step 4.

Bl N g, i B

Thus, the overall complexity of algorithm KNAPSACK is bounded by

o[ Log (N/(K+I)) (K log(J/K) + 1)) < 0 (K log2(J/K)) + 0 (1 log (N/I)).
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